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Reflection of a Coaxial Line

Radiating Into a Parallel Plate
Jung H. Lee, Hyo J. Eom, and Kyung H. Jun

Abstract-Reflection of a coaxial line radiating into a parallel
plate is solved analytically. The Hankel transform and the mode-

matchhg techrlique are used to represent the reflection coefficient

in rapidly converging series. The numerical computations are

performed to illustrate the reflection behavior in terms of coaxial

geometries and frequency. The presented series solution is an
analytic, closed-form that is simple yet efficient for numerical
computation.

I. INTRODUCTION

R ADIATION from a flanged coaxial line into a half-

space ha> been extensively studied in [ 1]–[3] for material

permittivity characterization. Radiation from a coaxial line into

a parallel-plate was also studied in [4] for antenna application.

Note that in [4] the current distribution at the coaxial line

aperture is arbitrarily assumed to determine the radiation. It

is thus of interest to rigorously determine the aperture current

and the reflection coefficient of the coaxial line radiating into a

parallel-plate. The purpose of the present paper is to represent

the reflection coefficient in rapidly converging series by using

the Hankel transform and the mode-matching technique. Our

solution is also general in that it reduces to a case of radiation

from the flanged coaxial line into a half space, as considered

in [ 1]–[3]. In the next section, we present an analytic solution

in simple series form and discuss its numerical behavior. A

brief summaq{ is given in Section III.

II. RADIATION ANALYSIS

Consider a coaxial line radiating into a conducting parallel

plate shown in Fig. 1. Assume an incident TEM mode excites

the coaxial line, thereby producing the reflected TEM and

all higher TMo~ mode inside the coaxial line. In region (I)

(a < r < b, z < O), the incident and reflected H-fields are

H:)(T’,2) = ‘“’’p’”
r

(2.1)

H$(r, .25)= coMoe–ifi’z/7_

cc

+ ~ cnlkfnl?n(r)e-ik””z (2.2)
n=l

where ~1 = wfi, k~~ = /31~1 - (km//?l)2, Rn(r) =

J1(knr)No(klzb) –iV1(knr).Jo(knb), &f. = l/~m, and

Mn = 7rk~/~2 – [2.J~(k~b)]/[J~ (k~a)]. J~(.) and IVno
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Fig. 1. Problem geometry.

are the nth order Bessel and Neumann functions, and kn is

determined by Jo(kna)No(knb) – i’Vo(kna)Jo(knb) = O.

In Region (II) (Z > 0), the transmitted H-field is

II$(?-,z) = r fi(() [e’iKz+ e2iNhe--iKz]. Jl(<~)(0!(
o

(2.3)

where K= -t h ==w@?i = 2xIJ: wave number.
The tangential E-fie’ld continuity at z = O yields

{

Ei(r, O) -t EJ(r, O), a < r < b
E~(r, O) = o“ (2.4)

> otherwise.

Taking the Hankel transform of (2.4) and solving for ~(()

“[
cc

1(1- Co)Pljo(O - ~ Cnkzn.fn(c) (2.5)
7L=1

where

(2.6)

~ ~() = 2Mn([Jo(~b)Jo(kna) – Jo(~a)Jo(knb)]
77

TkJ0(ka)(&2 - <2) “ ‘2”7)

The tangential H-field continuity at z = O gives

H$(r, O) = Hj, (r, O) + H;(T, O), a < r < b. (2.8)
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Substituting (2. 1), (2.2), and (2.3) into (2.8), multiplying

(2.8) by rMpRp (T) dr, and integrating from b to a, we then
obtain, after algebraic manipulation

c = (? GA)-lr (2.9)

where C is a column vector of CP, U is the unit matrix, and

the matrices A and r elements are for p >0

,’52 Cot(l$h)
g(<) = –2= —

K
(2.13)

where 6P0 is the Kronecker delta.

It is possible to evaluate aPn in rapidly converging series

by utilizing the residue calculus. By appropriately choosing a

contour path similar as in [5], we obtain

where Ajl (k~) denotes [dAll (()/d<] l~=~n, and

A.,(C) = [Jo(sakn)Jo(takp )Jo(b~)II~l) (b<)

– Jo(sakn)Jo(tbkp )Jo(aoH~l) (b<)

– Jo(sbkn)Jo(takp )Jo(a<)H~l) (b<)

+ Jo(sbkn)Jo(tbkp) Jo(aoH$l)(a<)] : (2.18)

S,t=l, o

(m =//3:- (y)2> m=o, l, z,... (2.19)

2MoMn
(2.2oj@~(~) = ~kn~o(kna)(k~ – (2)

4MPM.(2
‘~n(() = ~zkpkn~o(kpa)~o(kna)(k~ - <2)(J$; - <2)

(2.21)

{

1, m=o
a

‘= 2, m>l.
(2.22)
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Fig. 2. Hj (., z) field compsrismr with [4]. [a = 1.4264 mm, b = 4.7250

mm, c1 = ●Z = 2.08e0, z = h/2, h/b = 1, f = 10 GHz, CO:airperrnittivity,
+ + + Tomasic [4]; –.–.– first term in (2.23); 0000 second term in (2.23);
–– – third term in (2.23); _ H$ (T, z) (first + second + third terms).

From (2.3) and (2.5), we obtain the transmitted H-field as

H:(T, z) =
Y., ,

O!m

Km
m7r

Cos — .2
2 h

1– =
Pzh

.

. [JJ##) - JO(&#f:l) (.$rzr)

mcos’z
~~J,(&nT)Hjl)(&nb)- Hfl)(&n~)Jo(&n~)]

2hi CO,P2(I$.– Z) ~ ,——
7iT sin ~Z h m

Qm m7r
Cos - Z

[/()
2 h

1– ~

Jl(,Cmr)[Hf)(<mb) – H$’)(twm)]
m, T

-22 ‘2 C772Z
‘nX1 Tn=o .??7

{

[~o(&mb)~o(kna) - ~o(&ma)~o(knb)]Hfl)(<mr)

x Jl(t~r)Jo(k~a)Hi1)(t~6) – H$l)(C~r)Jo(C~a) Jo(k~b)

JI(&~r)[H~l)(C~ b) JO(k~a) – H~’)(&~a)Jo(k~b)]

- F ‘2cn:nMn “:;:$.%)
?2=1

{

o, r>b

x No(knb)c71(knT) – Jo(knb)N1(knr), a < T-< b

o, r<a—

(2.23)

whet-e Bl = -m [mvo]/[2h In (b/a)], BZI =

[2c~ezk~~&LM~a~] /[c~k~Jo(k~a)h], VO = [/?I(l -

CO)]/ [LJJq Me], and % = V@_=?

The comparison of the first term in (2.23) with (25) in

[4] reveals a difference in the expressions between them for

a < r ~ b. Fig. 2 shows a field distribution IH$ (r, h/2) I for

a < r < b, confirming a slight difference between the first
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Fig. 3. Reflection coefficient Ico I versus frequency (a = 1.4264 mm, b =
4.7250 mm, cl = @ = 2.086.).

term in (2.23) and (25) in [4]. Fig. 2 further shows that in

low-frequency limit (A >> a, b and [c. I >> ICI 1, [CZ1, . . .) the

second and third terms containing cm (n 2 1) in (2.23) may

be ignored.

When the flanged coaxial line radiates into a half-space

(h ~ m), the solution given in (2.9)-(2.12) is still applicable

by replacing (2.13) with g(<) = –cz/(cl K). Performing the
branch-cut integration of (2.10) and (2.11), we obtain aP~

in numerically efficient, fast converging integral forms for
h~cc

‘(’
apo = –@I~ ; db(OAol(@ dv (2.26)

TABLE I

CONVERGENCERATE OF Icn I VERSUS n WHEN hjb = 10.

(OTHER PARAMETERS USEO ARE THE SAME AS IN FIG. 3)

Frea.lGHzl II 0.5 ---r-Em I 9.5
.1

!’ HE12%R%
i I

where < = ~Z + iv. Ncte that (2.24)–(2.27) are numerically

more efficient than (2. llD)–(2. 11).

Fig. 3 shows the behavior of the reflection coefficient ICO I

versus frequency for different h/b. When h/b + co, our

results agree with [3]. When h/b > 10, Ico I is almost the same

as that for h/b + cc. Table [ shows the rate of convergence

for Icnl when h/b = 10. In Fig. 3, we use n = O, 1 to achieve

the numerical accuracy. This means that our series solution

converges very rapidly lhus numerically efficient.

111.. CONCLUSION

Reflection of a coaxial line radiating into a parallel plate

is solved with the Hank:el transform and the mode-matching

technique. An analytic series solution is obtained and its nu-

merical computations are performed to illustrate the reflection

behavior. The presented series solution is a rigorous, closed-

form that is simple and efficient for numerical computation.

lQ3FERENCES

[1]

[2]

[3]

[4]

[5]

H. Levine and C. H. Papas, “Theory of the circuhm cylinder diffraction

antenna,” 1 Appl. Phy$.. vol. ‘2.2, no. 1, pp. 29%43, Jan. 1951.
D. C. Chang, “Input admittance and complete nea-field distribution

of an annular aperture antenna. driven by a coaxial line,” IEEE Trans.
Antennas Propagat., vol. AP-18, no. 5, pp. 610-616, Sept. 1970.
J. R. Mosig, J. E. Besson, M. Gex-Fabry, and F. E. Gardiol, “Reflection
of an open-ended coaxial line and application to nondestructive mea-
surement of materials,” .IEEE Trans. Znstrurn. Mess., vol. IM-30, no. 1,
pp. 46–51, Mar. 1981.
B. Tomasic and A. Hessel, “Electric and magnetic current sonrces in the
parallel plate waveguide ;’ IEEE Trans. Antennas Propagat., vol. Al-45,

no. 11, pp. 1307–1310, Nov. 1987.
P. M. Morse and K. IJ. Ingard, Theoretical Acoustics. New York
McGraw-Hill, p. 640..


