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Reflection of a Coaxial Line
Radiating Into a Parallel Plate

Jung H. Lee, Hyo J. Eom, and Kyung H. Jun

Abstract—Reflection of a coaxial line radiating into a parallel
plate is solved analytically. The Hankel transform and the mode-
matching technique are used to represent the reflection coefficient
in rapidly converging series. The numerical computations are
performed to illustrate the reflection behavior in terms of coaxial
geometries and frequency. The presented series solution is an
analytic, closed-form that is simple yet efficient for numerical
computation.

I. INTRODUCTION

ADIATION from a flanged coaxial line into a half-

space has been extensively studied in [1]-[3] for material
permittivity characterization. Radiation from a coaxial line into
a parallel-plate was also studied in [4] for antenna application.
Note that in [4] the current distribution at the coaxial line
aperture is arbitrarily assumed to determine the radiation. It
is thus of interest to rigorously determine the aperture current
and the reflection coefficient of the coaxial line radiating into a
parallel-plate. The purpose of the present paper is to represent
the reflection coefficient in rapidly converging series by using
the Hankel transform and the mode-matching technique. Our
solution is also general in that it reduces to a case of radiation
from the flanged coaxial line into a half space, as considered
in [1]-{3]. In the next section, we present an analytic solution
in simple series form and discuss its numerical behavior. A
brief summary is given in Section IIL.

II. RADIATION ANALYSIS

Consider a coaxial line radiating into a conducting parallel
plate shown in Fig. 1. Assume an incident TEM mode excites
the coaxial line, thereby producing the reflected TEM and
all higher TMy,, mode inside the coaxial line. In region (I)
(a < r < b, z < 0), the incident and reflected H-fields are

i Moeiﬂlz
H(r, z) = — 2.1
Hi(r, z) = coMoe™ P17 [y
+ 3 enMy Ry (r)e e (2.2)

n=1

where 81 = w\//?l) ko = B1 1—(kn//81)27 R
Jl(k‘nT)No(knb)—Nl(knT)Jo(knb), M() = 1/\/1n (b/a), and
My = whn//2 = 2T (knd))/ (T3 (kn)]. Ju(-) and Np()
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Fig. 1. Problem geometry.

are the nth order Bessel and Neumann functions, and k., is
determined by Jo(kra)No{(knb) — No(kna)Jo{knb) = 0.
In Region (II) (z > 0), the transmitted H-field is

Hﬂnaziﬂwﬂ@nw”+¥“%”“yJﬂﬁx«
(2.3)

where & = \/B2° — (2, B2 = wy/fi€s = 27 /A: wave number.

The tangential F-field continuity at z = 0 yields

¢ _JEi(r, 0)+E(r,0), a<r<b
B (r, 0) = {0, otherwise, =V
Taking the Hankel transform of (2.4) and solving for H(()
~ €9 1
HO) =2 -
© €1 k(1 - eZirh)
’ I:(]- - CO)ﬂlfO(C) - Z anznfn(C) (2.5)
n=1
where

oy = — Mllt) = (o)

_ 2MaGI(D)TolEn) = Fo(Ga)Talhab)]
ThnJo(kna)(kn® — C?) o

2.6)

fn()

The tangential H-field continuity at z = 0 gives

Hi(r, 0) = Hj(r, 0) + Hy(r, 0), a <r< bh.  (2.8)
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Substituting (2.1), (2.2), and (2.3) into (2.8), multiplying
(2.8) by M, R,(r) dr, and integrating from b to a, we then
obtain, after algebraic manipulation

C=U-A"" (2.9)

where C is a column vector of ¢, U is the unit matrix, and
the matrices A and T" elements are for p > 0

a0 = / B19(O) FolQ) () dC 210

Gpn = /O Fang(Ofa(Ofo(OCC, n>1 @11
Tp = —0po — 6170 2.12)

ez cot(kh)
9(¢) = e TR

(2.13)

where 0y is the Kronecker delta.

It is possible to evaluate a,, in rapidly converging series
by utilizing the residue calculus. By appropriately choosing a
contour path similar as in [5], we obtain

. e
agy = —1 22 ot Bah
€1

B — Aoo(ém)
_ 71 mZ::O TMZ oy, Offéfn (2.14)
ko s
Aon = 7r2h am¢n(§m)A10(£m) (2.15)
m=0
apo = 12% U ®p(Em)Ao1(€m) (2.16)
m=0
ea M2 cot (/3% — k2h)
pn = e1mkn J? 5 (kna) Au(kn)ﬁpn
kzn >
- SN o)A (En) @1
m=0
where A}, (kn) denotes [dA11(¢)/d¢]|¢=t.., and
Aet(Q) = [Jo(sakn) Jo(taky) Jo(b)HSY (b¢)
— Jo(saky) Jo(tbky) Jo(al) HSY (b¢)
— Jo(sbkn)Jo(taky) Jo(al) HSV (6¢)
+ Jo(obkn) Jo(thhy) Jo () HE (a)] 2 (2.18)
s,t=1,0
€m =1/02 — (”;:T)Q, m=01,2 - (219
_ 2M0 "
Ypr({) = AM, Mo ¢
L 2kpknJo(kpa)Jo(kna)(k2 — ¢2)(k2 — (?)
(2.21)
Oy = { ; Z ; (1). (2.22)
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Fig. 2. Ht L (r, ) field comparison with [4]. [ = 1.4264 mm, b = 4.7250
mm, €; = €3 = 2.08¢0, 2 = h/2, h/b =1, f = 10 GHz, ¢p: air permittivity,
+ + + Tomasic [4]; ——.— first term in (2. 23) o 0 oo second term in (2.23);
— — — third term in (2.23); H é(r, z) (first + second + third terms).

From (2.3) and (2.5), we obtain the transmitted H-field as

Hi(r, z) = Ot’m
—n—W—Q Ccos Tl
-(5E)
[J0(Emb) = Jo(Ena)l H{" (mr)
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if:

0, r>b
No(knb)J1(knr) — Jo(kpb)Ni(knr), a<r<b

o, r<a
(2.23)
where By = —y/ea/po[nVp]/[2h In(b/a)], By =
[2Cn62kzn§72nMnam]/[ElknJO(kna)hL VO = [ﬁl(l -

co)]/[we1My], and K, = \/k3 — k2.

The comparison of the first term in (2.23) with (25) in
[4] reveals a difference in the expressions between them for
a <7 < b. Fig. 2 shows a field distribution |H}(r, h/2)| for
a < r < b, confirming a slight difference between the first
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Fig. 3. Reflection coefficient |co| versus frequency (¢ = 1.4264 mm, b =

4.7250 mm, €; = €2 = 2.08¢g).

term in (2.23) and (25) in [4]. Fig. 2 further shows that in
low-frequency limit (A > a, b and |co| > |c1], |ez|, -+ -) the
second and third terms containing c, (n > 1) in (2.23) may
~ be ignored.

When the flanged coaxial line radiates into a half-space
(h — o0), the solution given in (2.9)—(2.12) is still applicable
by replacing (2.13) with g({) = —ez/(€1%). Performing the
branch-cut integration of (2.10) and (2.11), we obtain apn
in numerically efficient, fast converging integral forms for

h — oo
[e's) M2
ago = — \/E%+51 /0 H—gAOO(C)idU (2.24)
aon —_—_kzn o —,i-qﬁn(C)AlO(C)’td’U (225)
__ / S :
apo =—P1 s bp(¢)A01(¢)i dv (2.26)
_ iEzMTZL /o
Apn = — élﬂ,knjg(kna) All(kn)épn
tho [ SupOM(Oidy @20
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TABLE 1
CONVERGENCE RATE OF |cn,| VERSUS n WHEN h/b = 10.
(OTHER PARAMETERS USED ARE THE SAME AS IN FiG. 3)

Freq.[GHz] 05 | 50 | 95
z ol | ol | 1o
0 0.999996 | 0.989252 | 0.926587
1 0.002953 | 0.034111 | 0.067913
2 0.000948 | 0.009146 | 0.016410
3 0.000320 | 0.003624 | 0.006818

where ¢ = 32 + 1. Note that (2.24)—(2.27) are numerically
more efficient than (2.10)—(2.11).

Fig. 3 shows the behavior of the reflection coefficient |co|
versus frequency for different h/b. When h/b — oo, our
results agree with [3]. When h/b > 10, |co| is almost the same
as that for h/b — oo. Table I shows the rate of convergence
for |c,| when /b = 10. In Fig. 3, we use n = 0, 1 to achieve
the numerical accuracy. This means that our series solution
converges very rapidly thus numerically efficient.

III. CONCLUSION

Reflection of a coaxial line radiating into a parallel plate
is solved with the Hankel transform and the mode-matching
technique. An analytic series solution is obtained and its nu-
merical computations are performed to illustrate the reflection
behavior. The presented series solution is a rigorous, closed-
form that is simple and efficient for numerical computation.
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